Statistics: Transport Statistics

Aim:

Interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs.

I can interpret and present discrete data using pictograms and bar charts.

Success Criteria:

I can collect discrete data in a frequency table.
I can interpret and answer questions about data presented in a pictogram or bar chart.

I can present data in a pictogram or bar chart.

Key/New Words:

Pictogram, frequency table, tally, data, bar chart, axis, scale, discrete data.

Resources:

Lesson Pack
Whiteboards and pens - 1 per child

Preparation:

Differentiated Transport Statistics Activity Sheets - 1 per child

Prior Learning: It will be helpful if children have experience of interpreting and presenting data in pictograms.

Learning Sequence

Colour Car Investigation: Using the animation displayed on the Lesson Presentation, the children complete a
frequency table to show the different colours of cars which pass by a school in a five-minute period. Discuss the
purpose of the three columns in the frequency table and how to correctly use tally marks. Complete the activity by
answering three questions about the data collected.

	Diving into Mastery: Schools using a mastery approach may prefer to use the following as an alternative activity. These sheets might not necessarily be used in a linear way. Some children might begin at the 'Deeper' section and in fact, others may 'dive straight in' to the 'Deepest' section if they have already mastered the skill and are applying this to show their depth of understanding.

Masterit

Extendit: Use Google Street View to take a virtual walk along a residential street and create a tally chart to show the different colours of cars. Use this data to draw pictograms and bar charts.
Challengeit: Challenge children to follow their own line of enquiry based around a transport theme to collect data to present as pictogram or a bar chart.

\square
 Maths

Statistics

$\stackrel{\rightharpoonup}{5}$

Transport Statistics

Colour Car Investigation

The children in Class 4 are carrying out an investigation to find out how many different colour cars pass by their school in five minutes.

Colour Car Investigation

Data that is counted and has no inbetween value is called discrete data. Help the class to answer these questions about their discrete data.

Colour	Tally	Frequency	
Red	HH HI	10	
Blue	HH HH II	12	
Black	HH \|II	8	
Silver	HH \|	II	9
Other	HH \|	6	

Pictograms

The children in Class 4 have carried out a different investigation and presented it as a pictogram.

A Pictogram to Show How the Children in Class 4 Travel to School

	Key:	2 children				

Pictograms

In this pictogram, each circle represents two children. Half of the circle represents one child. This is shown in the key.

Drawing a Pictogram

Next, the children in Class 4 asked all the children in KS2 how they travelled to school.

Bar Charts

Class 4's teacher, Ms Jones, explains to the children that they can also present their data as a bar chart.

Bar Charts Questions

Use the bar chart to help the children in Class 4 answer these questions about their data.

A Bar Chart to Show How the Children in KS2 Travel to School

How many children in KS2 travel to school by train or car?

Bar Charts Scales

When presenting data as a bar chart, choosing the best scale for the number line axis is an important decision.

| Types of Vehicle Passing by the School |
| :--- | :--- |
| \qquadType of Vehicle Number Passing By
 Car 54
 Bicycle 15
 Van 23
 Lorry 14
 Motorbike 17
 Other 6 |

I think we should use a scale of 1 when drawing our bar chart.
I think we should use a
scale of 2 when drawing our
bar chart.

I think we should use a scale of 5 when drawing our bar chart.

I think we should use a scale of 10 when drawing our bar chart.

Transport Statistics

Use your marvellous maths skills to complete these activity sheets:

Who's Correct?

Which of these statements interprets the bar chart correctly?

Transport Statistics

I can interpret and present discrete data using pictograms and bar charts.

Here is a table of data that shows the number of different vehicles that passed by a school over half an hour.

Type of Vehicle	Car	Bus	Bicycle	Van	Other
Number That Passed By	12	4	5	7	6

Draw a pictogram to show the data:
A pictogram to show \qquad

Key:

1) What type of data is the number of vehicles?
2) How many more vans passed by than buses?
3) How many bicycles and vans passed by in total?
4) How many other types of vehicle passed by?
5) How many vehicles passed by altogether over the half an hour?

Transport Statistics Answers

Question	Answer
	Draw a pictogram to show the data: Pictogram will depend on the scale chosen.
A pictogram to show the number of different vehicles that passed by a school over half an hour.	
1.	What type of data is the number of vehicles?
Discrete	
2.	How many more vans passed by than buses?
3	
3.	How many bicycles and vans passed by in total?
12	
4.	How many other types of vehicle passed by?
6	
5.	How many vehicles passed by altogether over the half an hour?
	34

Transport Statistics

I can interpret and present discrete data using pictograms and bar charts.

Here is a table of data that shows the number of different vehicles that passed by a school over an hour.

Type of Vehicle	Car	Bus	Bicycle	Van	Motorbike	Other
Number That Passed By	23	10	9	12	5	17

Draw a bar chart to show the data:
A bar chart to show \qquad

Transport Statistics Answers

Transport Statistics

I can interpret and present discrete data using pictograms and bar charts.

Here is a table of data that shows the number of different vehicles that passed by a school over an hour and a half.

Type of Vehicle	Car	Bus	Bicycle	Van	Motorbike	Other
Number That Passed By	37	18	12	25	6	23

Draw a bar chart to show the data:
A bar chart to show \qquad

Label: \qquad

1) How many more cars passed by than buses?
2) How many more vans passed by than buses?
3) How many bicycles, vans and motorbikes passed by in total?
4) How many more buses and bicycles passed by than vans?
5) How many vehicles passed by altogether over the hour and a half?

Transport Statistics Answers

Question	Answer										
	Draw a bar chart to show the data:										
	A bar chart to show the number of different vehicles that passed by a school over an hour and a half.										
1. How many more cars passed by than buses?				3. How many bicycles, vans and motorbikes passed by in total?							
	19			43							
2. How many more vans passed by than buses?				4. How many more buses and bicycles passed by than vans?							
	7		5								
			5. How many vehicles passed by altogether over the hour and a half?								
			121								

1) Answers to each question will vary.
2)

a) 4
b) 8
c) 6
d) 50
2)
a) 43
b) Motorcycle or 'other'
c) Car and van
d) No

1) Children should disagree on the basis that her numbers are too great and to draw 220 individual cars will be hard to create and count for people reading her data.
2) He has read the greatest number shown on the chart rather than found the sum of the results.
3) Answers will vary, but could include: There were 67 cars counted in the survey. The most popular colours were white, grey and silver. The least popular colour car was green.
4) a) Use this table to record how the children in your class travel to school.

Transport Type	Tally	Number of Children
Car		
Walk		
Bus or Train		
Bicycle		
Other		

b) Use the table to complete the sentences below.

The most popular way to get to school is \qquad

The least popular way to get to school is \qquad -
2) Use squared paper to present your results as a bar chart or pictogram.

1) Here is a table showing the number of different vehicles going past a school over an hour.

Vehicle	Number Seen Going past School
Car	28
Bicycle	3
Bus	3
Van	11
Lorry	2
Motorcycle	1
Other	2

a) How many bicycles and motorcycles went past in total?
b) How many more vans went past than buses?
\qquad
c) How many more cars went past than all the other vehicles combined?
d) How many vehicles in total went past the school?
2) Here is a bar chart showing the number of vehicles going past a school over an hour.

a) How many vehicles passed in total?
b) Which was the least common vehicle?
c) Which were the two most common vehicles?
\qquad
d) Were there more cars going past than all the other vehicles combined?
\qquad

1) Emma creates a pictogram to represent the different colours of cars in the supermarket car park. There are 220 cars in the car park in total. She says,

The best thing to do is to have each car picture represent one car.

Do you agree with her? Why?
\qquad
\qquad
2) Tanjeer sees this bar chart and says,

The total number of cars in the car park is 22.

What mistake has he made?

\qquad
\qquad
\qquad

3) Write as many true statements as you can that you know from looking at this bar chart.
\qquad
\qquad
\qquad

1) a) Use this table to record how the children in your class travel to school.

Transport Type	Tally	Number of Children
Car		
Walk		
Bus or Train		
Bicycle		
Other		

b) Use the table to answer the question.

What are the most and least popular ways to get to school?
2) Use the squares in your book or squared paper to present your results as a bar chart or pictogram.

1) Here is a table showing the number of different vehicles going past a school over an hour.

Vehicle	Number Seen Going past School
Car	28
Bicycle	3
Bus	3
Van	11
Lorry	2
Motorcycle	1
Other	2

a) How many bicycles and motorcycles went past in total?
b) How many more vans went past than buses?
c) How many more cars went past than all the other vehicles combined?
d) How many vehicles in total went past the school?
2) Here is a bar chart showing the number of vehicles going past a school over an hour.

a) How many vehicles passed in total?
b) Which was the least common vehicle?
c) Which were the two most common vehicles?
d) Were there more cars going past than all the other vehicles combined?

1) a) Use this table to record how the children in your class travel to school.

Transport Type	Tally	Number of Children
Car		
Walk		
Bus or Train		
Bicycle		
Other		

b) Use the table to answer the question.

What are the most and least popular ways to get to school?
2) Use the squares in your book or squared paper to present your results as a bar chart or pictogram.

1) Here is a table showing the number of different vehicles going past a school over an hour.

Vehicle	Number Seen Going past School
Car	28
Bicycle	3
Bus	3
Van	11
Lorry	2
Motorcycle	1
Other	2

a) How many bicycles and motorcycles went past in total?
b) How many more vans went past than buses?
c) How many more cars went past than all the other vehicles combined?
d) How many vehicles in total went past the school?
2) Here is a bar chart showing the number of vehicles going past a school over an hour.

a) How many vehicles passed in total?
b) Which was the least common vehicle?
c) Which were the two most common vehicles?
d) Were there more cars going past than all the other vehicles combined?

1) Emma creates a pictogram to represent the different colours of cars in the supermarket car park. There are 220 cars in the car park in total. She says,

The best thing to do is to have each car picture represent one car.

Do you agree with her? Why?
2) Tanjeer sees this bar chart and says,

The total number of cars in the car park is 22.

What mistake has he made?

3) Look at this bar chart. Using the data, write as many true statements as you can in your book.

1) Emma creates a pictogram to represent the different colours of cars in the supermarket car park. There are 220 cars in the car park in total. She says,

The best thing to do is to have each car picture represent one car.

Do you agree with her? Why?

2) Tanjeer sees this bar chart and says,

The total number of cars in the car park is 22.
What mistake has he made?

3) Look at this bar chart. Using the data, write as many true statements as you can in your book.

Statistics | Transport Statistics

I can interpret and present discrete data using pictograms and bar charts.		
I can collect discrete data in a frequency table.		
I can interpret and answer questions about data presented in a pictogram or bar chart.		
I can present data in a pictogram or bar chart.		

Statistics | Transport Statistics

I can interpret and present discrete data using pictograms and bar charts.		
I can collect discrete data in a frequency table.		
I can interpret and answer questions about data presented in a pictogram or bar chart.		
I can present data in a pictogram or bar chart.		

Statistics | Transport Statistics

I can interpret and present discrete data using pictograms and bar charts.		
I can collect discrete data in a frequency table.		
I can interpret and answer questions about data presented in a pictogram or bar chart.		
I can present data in a pictogram or bar chart.		

Statistics | Transport Statistics

I can interpret and present discrete data using pictograms and bar charts.		
I can collect discrete data in a frequency table.		
I can interpret and answer questions about data presented in a pictogram or bar chart.		
I can present data in a pictogram or bar chart.		

Statistics | Transport Statistics

I can interpret and present discrete data using pictograms and bar charts.		
I can collect discrete data in a frequency table.		
I can interpret and answer questions about data presented in a pictogram or bar chart.		
I can present data in a pictogram or bar chart.		

Statistics | Transport Statistics

I can interpret and present discrete data using pictograms and bar charts.		
I can collect discrete data in a frequency table.		
I can interpret and answer questions about data presented in a pictogram or bar chart.		
I can present data in a pictogram or bar chart.		

Statistics | Transport Statistics

I can interpret and present discrete data using pictograms and bar charts.		
I can collect discrete data in a frequency table.		
I can interpret and answer questions about data presented in a pictogram or bar chart.		
I can present data in a pictogram or bar chart.		

Statistics | Transport Statistics

I can interpret and present discrete data using pictograms and bar charts.		
I can collect discrete data in a frequency table.		
I can interpret and answer questions about data presented in a pictogram or bar chart.		
I can present data in a pictogram or bar chart.		

Maths I Year 4 I Statistics I Interpret and Present Discrete and Continuous Data Using Graphs I Lesson 1 of 5: Transport Statistics

